上海徐吉電氣有限公司作者
電力電子電路的實際運行表明,大多數(shù)故障表現(xiàn)為功率開關(guān)器件的損壞,其中以功率開關(guān)器件的開路和直通zui為常見。電力電子電路故障診斷與一般的模擬電路、數(shù)字電路的故障診斷存在較大差別,由于電力電子器件過載能力小,損壞速度快,其故障信息僅存在于發(fā)生故障到停電之前數(shù)十毫秒之內(nèi),因此,需要實時監(jiān)視、在線診斷;另外電力電子電路的功率已達數(shù)千千瓦,模擬電路、數(shù)字電路診斷中采用的改變輸入看輸出的方法不再適用,只能以輸出波形來診斷電力電子電路是否有故障及有何種故障。
故障診斷的關(guān)鍵是提取故障的特征。故障特征是指反映故障征兆的信號經(jīng)過加工處理后所得的反映設(shè)備與系統(tǒng)的故障種類、部位與程度的綜合量。故障診斷方法按提取特征的方法的區(qū)別,可分為譜分析方法、基于動態(tài)系統(tǒng)數(shù)學(xué)模型的方法、采用模式識別的方法、基于神經(jīng)網(wǎng)絡(luò)的方法、專家系統(tǒng)的方法、小波變換的方法和利用遺傳算法等。這些方法將在下文具體介紹。
一、故障診斷中的譜分析方法
在故障診斷中比較常用的信號處理方法是譜分析。常用傅里葉譜、沃爾什譜,另外還有濾波、相關(guān)分析等。譜分析的目的:信號中包含噪聲,為了提取特征;故障信號的時域波形不能清楚地反映故障的特征。而電力電子電路中包含故障信息的關(guān)鍵點信號通常具有周期性,因此可以用傅里葉變換將時域中的故障波形變換到頻域,以突出故障特征,實現(xiàn)故障診斷。
傅里葉變換是將某一周期函數(shù)分解成各種頻率的正弦分量,類似地,沃爾什變換是將某一函數(shù)分解成一組沃爾什函數(shù)分量。自適應(yīng)濾波是一種數(shù)字信號的處理統(tǒng)計方法,它不需要知道信號一二階的先驗統(tǒng)計知識,直接利用觀測資料,通過運算改變?yōu)V波器的某些參數(shù),而使自適應(yīng)濾波器的輸出能自動跟蹤信號特性的變化。在電力電子系統(tǒng)故障診斷中,可以用自適應(yīng)處理來實現(xiàn)噪聲抵消,譜線增強等功能,從噪聲背景下提取故障特征,從而實現(xiàn)準確的診斷。
二、參數(shù)模型與故障診斷
如果系統(tǒng)的數(shù)學(xué)模型是已知的,就可以通過測量,估計系統(tǒng)的狀態(tài)和參數(shù),確定狀態(tài)變量和系統(tǒng)參量是否變化。采用基于系統(tǒng)數(shù)學(xué)模型的故障診斷方法,可以從較少的測量點去估計系統(tǒng)的多個狀態(tài)量或系統(tǒng)參數(shù),從而實現(xiàn)故障診斷。
進一步又可以分為檢測濾波器方法、狀態(tài)估計法和參數(shù)辨識方法三種。
1、檢測濾波器方法
它將部件、執(zhí)行機構(gòu)和傳感器的故障的輸出方向分別固定在特定的方向或平面上。
2、狀態(tài)估計法
通過監(jiān)測系統(tǒng)的狀態(tài)變化,也能反映由系統(tǒng)參數(shù)變化引起的故障,并對故障進行診斷。與一般的狀態(tài)估計不同,在進行故障診斷時,并不是去估計未知的狀態(tài)信息,而是借助觀測器或卡爾曼濾波器去重構(gòu)系統(tǒng)的輸出,以便取得系統(tǒng)輸出的估計值。這個估計值與實際輸出值之差就叫量測殘差。殘差中含有大量的系統(tǒng)內(nèi)部變化的信息,因此可以作為故障診斷的依據(jù)。狀態(tài)估計法的優(yōu)點是在線計算量小,診斷速度快。
3、參數(shù)辨識方法
實時辨識出系統(tǒng)模型的參數(shù),與正常時模型的參數(shù)比較,確定故障。常用的有zui小二乘法。
故障診斷的關(guān)鍵是提取故障的特征。故障特征是指反映故障征兆的信號經(jīng)過加工處理后所得的反映設(shè)備與系統(tǒng)的故障種類、部位與程度的綜合量。故障診斷方法按提取特征的方法的區(qū)別,可分為譜分析方法、基于動態(tài)系統(tǒng)數(shù)學(xué)模型的方法、采用模式識別的方法、基于神經(jīng)網(wǎng)絡(luò)的方法、專家系統(tǒng)的方法、小波變換的方法和利用遺傳算法等。這些方法將在下文具體介紹。
一、故障診斷中的譜分析方法
在故障診斷中比較常用的信號處理方法是譜分析。常用傅里葉譜、沃爾什譜,另外還有濾波、相關(guān)分析等。譜分析的目的:信號中包含噪聲,為了提取特征;故障信號的時域波形不能清楚地反映故障的特征。而電力電子電路中包含故障信息的關(guān)鍵點信號通常具有周期性,因此可以用傅里葉變換將時域中的故障波形變換到頻域,以突出故障特征,實現(xiàn)故障診斷。
傅里葉變換是將某一周期函數(shù)分解成各種頻率的正弦分量,類似地,沃爾什變換是將某一函數(shù)分解成一組沃爾什函數(shù)分量。自適應(yīng)濾波是一種數(shù)字信號的處理統(tǒng)計方法,它不需要知道信號一二階的先驗統(tǒng)計知識,直接利用觀測資料,通過運算改變?yōu)V波器的某些參數(shù),而使自適應(yīng)濾波器的輸出能自動跟蹤信號特性的變化。在電力電子系統(tǒng)故障診斷中,可以用自適應(yīng)處理來實現(xiàn)噪聲抵消,譜線增強等功能,從噪聲背景下提取故障特征,從而實現(xiàn)準確的診斷。
二、參數(shù)模型與故障診斷
如果系統(tǒng)的數(shù)學(xué)模型是已知的,就可以通過測量,估計系統(tǒng)的狀態(tài)和參數(shù),確定狀態(tài)變量和系統(tǒng)參量是否變化。采用基于系統(tǒng)數(shù)學(xué)模型的故障診斷方法,可以從較少的測量點去估計系統(tǒng)的多個狀態(tài)量或系統(tǒng)參數(shù),從而實現(xiàn)故障診斷。
進一步又可以分為檢測濾波器方法、狀態(tài)估計法和參數(shù)辨識方法三種。
1、檢測濾波器方法
它將部件、執(zhí)行機構(gòu)和傳感器的故障的輸出方向分別固定在特定的方向或平面上。
2、狀態(tài)估計法
通過監(jiān)測系統(tǒng)的狀態(tài)變化,也能反映由系統(tǒng)參數(shù)變化引起的故障,并對故障進行診斷。與一般的狀態(tài)估計不同,在進行故障診斷時,并不是去估計未知的狀態(tài)信息,而是借助觀測器或卡爾曼濾波器去重構(gòu)系統(tǒng)的輸出,以便取得系統(tǒng)輸出的估計值。這個估計值與實際輸出值之差就叫量測殘差。殘差中含有大量的系統(tǒng)內(nèi)部變化的信息,因此可以作為故障診斷的依據(jù)。狀態(tài)估計法的優(yōu)點是在線計算量小,診斷速度快。
3、參數(shù)辨識方法
實時辨識出系統(tǒng)模型的參數(shù),與正常時模型的參數(shù)比較,確定故障。常用的有zui小二乘法。
全年征稿/資訊合作
聯(lián)系郵箱:hbzhan@vip.qq.com
- 版權(quán)與免責(zé)聲明
- 1、凡本網(wǎng)注明"來源:環(huán)保在線"的所有作品,版權(quán)均屬于環(huán)保在線,轉(zhuǎn)載請必須注明環(huán)保在線,http://m.kytsldc.cn。違反者本網(wǎng)將追究相關(guān)法律責(zé)任。
- 2、企業(yè)發(fā)布的公司新聞、技術(shù)文章、資料下載等內(nèi)容,如涉及侵權(quán)、違規(guī)遭投訴的,一律由發(fā)布企業(yè)自行承擔(dān)責(zé)任,本網(wǎng)有權(quán)刪除內(nèi)容并追溯責(zé)任。
- 3、本網(wǎng)轉(zhuǎn)載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點或證實其內(nèi)容的真實性,不承擔(dān)此類作品侵權(quán)行為的直接責(zé)任及連帶責(zé)任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品來源,并自負版權(quán)等法律責(zé)任。
- 4、如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。